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Abstract
Using Monte Carlo integration methods, we describe the behaviour of the
exact four-spinon dynamic structure function S4 in the antiferromagnetic spin
1
2 Heisenberg quantum spin chain as a function of the neutron energy ω and
momentum transfer k. We also determine the four-spinon continuum, the
extent of the region in the (k, ω) plane outside which S4 is identically zero. In
each case, the behaviour of S4 is shown to be consistent with the four-spinon
continuum and compared to that of the exact two-spinon dynamic structure
function S2. Overall shape similarity is noted.

PACS numbers: 75.10.Jm, 75.10.Pq, 71.45.Gm, 28.20.Cz, 02.20.Uw

1. Introduction

The spin s = 1
2 Heisenberg quantum spin chain describes the magnetic properties of quasi-

one-dimensional antiferromagnetic compounds such as KCuF3 [1]. The spin dynamics
is experimentally investigated using inelastic neutron scattering [2]. From a theoretical
standpoint, the quantity of interest is the dynamic structure function (DSF) S of two local
spin operators. This is because the magnetic scattering cross section per magnetic site is
directly proportional to it [3].

The Heisenberg model has been studied quite intensively [4, 5], and because of the
presence of the Uq(ŝl2) symmetry [6], a number of exact results are available. Static properties
need only the Yang–Baxter relation [5], whereas dynamic correlation functions require the
additional notion of vertex operators and exploit bosonization methods [7]. One thus obtains
compact expressions for form factors [6].
3 Present address: The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste,
Italy.
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Regarding the dynamic structure function, the focus has so far been on S2, the two-spinon
contribution to the total S. First there has been the Anderson (semi-classical) spin-wave theory
[8], an approach based on an expansion in powers of 1/s and hence, exact only in the classical
limit s = ∞. It can describe with some satisfaction compounds with higher spins [9], but fails
in the quantum limit s = 1

2 . For this latter system, the Müller ansatz has been proposed, built
mainly from finite-chain calculations and symmetry considerations [10]. It is an approximate
expression for S2 that accounts satisfactorily for many aspects of the phenomenology [2].
More recently, an exact expression for S2 has been obtained, making extensive use of the
Uq(ŝl2) symmetry [11], and a comparison with the Müller ansatz shows that it gives a better
account of the data [12, 13].

Beyond the two-spinon DSF S2 are of course all the other S2p>2 contributions. The first
one to look at is the four-spinon dynamic structure function S4, and the purpose of the present
paper is to describe its behaviour. An exact expression for S4 has been derived in [14], see also
[15]. It is by far a lot more involved than that of S2 and one must emphasize that extensive
use of the Uq(ŝl2) quantum algebra symmetry is necessary in order to arrive at the result
(2.17)–(2.21) below. We intend to use that exact expression to describe the behaviour of S4 as
a function of the neutron energy transfer ω and neutron momentum transfer k. It must be clear
that our primary goal in this paper is to demonstrate that even if it appears in an intricate form,
exact S4 can nevertheless deliver tangible and useful information. In other words, detecting
and exploiting a quantum group symmetry in a given model can be phenomenologically fruitful
and should not be discarded as a simple ‘curious academic exercise’.

We must mention that a preliminary investigation into the behaviour of S4 has already
been initiated in [16]. There we have used quadratures to perform the integrations involved in
the expression of S4. But because of slow convergence of the algorithms we wrote, we could
describe the behaviour of S4 only as a function of k, and only for relatively small values of
ω. In the present work, the integrations are performed using Monte Carlo methods, and this
makes it possible not only to study S4 as a function of k for a wider range of values of ω, but
to obtain a description of S4 as a function of ω for a wide range of values of k as well. It is
however important to note that, for the same values of ω, the behaviour of S4 as a function of
k we obtain here by Monte Carlo methods is similar and consistent with that we obtained in
[16] using quadratures.

Also, we systematically carry a comparison of each result we obtain regarding S4 to a
corresponding one regarding S2. The reason is that there is good familiarity in the literature
with the two-spinon DSF and so, such a comparison allows faster acquaintance with the four-
spinon contribution. To make the discussion as clear as possible, we scale both S4 and S2 to 1.
All results concerning S2 are already known [11, 12]; only those concerning S4 are new.

A final comment regards the precision of the Monte Carlo runs. Although the statistics
is satisfactory in general, except for certain few points, we refrain in this paper from having
a discussion on the precision of our results. As mentioned earlier, our primary goal here is
to show that it is possible to go beyond the two-spinon DSF. In a forthcoming work [17], we
calculate a number of sum rules for S4 (and S2) the total DSF is known to satisfy exactly, and
it is there that we reserve space for a full discussion on the precision of the Monte Carlo runs.

This paper is organized as follows. After these introductory remarks, we describe in the
next section the Heisenberg model and give the definition of the dynamic structure function.
We write its decomposition in 2p-spinon contributions and give the expressions of S2 and
S4. In section 3, we first determine the four-spinon continuum, the region in the (k, ω)

plane outside which S4 is identically zero. We will see that it extends beyond the spin-wave
des Cloizeaux and Pearson boundaries. To the best of our knowledge, this result is a first direct
and explicit exact theoretical confirmation that the total S for the infinite chain tails outside the
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spin-wave continuum. Next in this section is a description of the behaviour of S4 as a function
of ω for fixed values of k followed by a comparison with the corresponding behaviour of S2.
It is seen that there is consistency with the four-spinon continuum and that the overall shape
(not the details) of S4 is similar to that of S2, each in its own respective continuum. Last in
this section is a description of the behaviour of S4 as a function of k for fixed values of ω and
a comparison with the corresponding one of S2. Here too similarity between the two overall
shapes is found as well as consistency with the four-spinon continuum. Section 4 includes
concluding remarks and indicates a few directions in which this work can be carried forward.

This paper is a continuation of the work [14]. We use the same notation except for a
slight modification in (2.18), here we introduce the function h instead of the function f with
the relation f ≡ exp(−h).

2. Four-spinon dynamic structure function

The antiferromagnetic spin- 1
2XXX Heisenberg chain is defined as the isotropic limit of the

XXZ anisotropic Heisenberg Hamiltonian:

H = −1

2

∞∑
n=−∞

(
σx

n σ x
n+1 + σy

n σ
y

n+1 + �σz
nσ z

n+1

)
. (2.1)

Here � = (q + q−1)/2 is the anisotropy parameter and q is the deformation parameter in
Uq(ŝl2). The isotropic antiferromagnetic limit is obtained as � → −1−, or equivalently
q → −1−. Here σ

x,y,z
n are the usual Pauli matrices acting at the site n of the chain. The exact

diagonalization of this Hamiltonian is performed directly in the thermodynamic limit. This is
necessary if we want to exploit the Uq(ŝl2) quantum group symmetry present in the model [6].
One consequence is the appearance of two vacuum states |0〉i , i = 0, 1 due to two different
boundary conditions on the infinite chain. The Hilbert space F consists of n-spinon energy
eigenstates |ξ1, . . . , ξn〉ε1,...,εn;i such that

H |ξ1, . . . , ξn〉ε1,...,εn;i =
n∑

j=1

e(ξj )|ξ1, . . . , ξn〉ε1,...,εn;i (2.2)

where e(ξj ) is the energy of spinon j and ξj is a spectral parameter living on the unit circle.
In the above relation, εj = ±1. The translation operator T which shifts the spin chain by one
site acts on the energy eigenstates in the following manner,

T |ξ1, . . . , ξn〉ε1,...,εn;i =
n∏

i=1

τ(ξi)|ξ1, . . . , ξn〉ε1,...,εn;1−i (2.3)

where τ(ξj ) = e−ip(ξj ) and p(ξj ) is the lattice momentum of spinon j . The exact expressions
of the spinon energy and lattice momentum in terms of the spectral parameter are known
in the literature [18, 6, 14]. We are interested in their XXX limit and it is given below in
equation (2.12). The completeness relation in F reads

I =
∑
i=0,1

∑
n�0

∑
{εj =±1}j=1,n

1

n!

∮ n∏
j=1

dξj

2π iξj

|ξ1, . . . , ξn〉ε1,...,εn;ii;ε1,...,εn
〈ξ1, . . . , ξn|. (2.4)

The two-point dynamic structure function is defined as the Fourier transform of the
zero-temperature vacuum-to-vacuum two-point function. The transverse DSF is therefore
defined by

Si,+−(ω, k) =
∫ ∞

−∞
dt

∑
m∈Z

ei(ωt+km)
i〈0|σ +

m(t)σ−
0 (0)|0〉i (2.5)
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where ω and k are the neutron energy and momentum transfer respectively, and σ± denotes
(σ x ± iσy)/2 . The DSF satisfies the following relations,

Si,+−(ω, k) = Si,+−(ω,−k) = Si,+−(ω, k + 2π) (2.6)

expressing reflection symmetry and periodicity. Inserting the completeness relation (2.4) and
using the Heisenberg relation,

σx,y,z
m (t) = exp(iHt)T −mσ

x,y,z

0 (0)T m exp(−iHt) (2.7)

we can write the transverse DSF as the sum of n-spinon contributions,

Si,+−(ω, k) =
∑
n even

Si,+−
n (ω, k) (2.8)

where the n-spinon DSF Sn is given by

Si,+−
n (ω, k) = 2π

n!

∑
m∈Z

∑
ε1,...,εn

∮ n∏
j=1

dξj

2π iξj

exp

im

k +
n∑

j=1

pj

δ

ω −
n∑

j=1

ej


×Xi+m

εn,...,ε1
(ξn, . . . , ξ1)X

1−i
ε1,...,εn

(−qξ1, . . . ,−qξn) (2.9)

a relation in which Xi denotes the form factor:

Xi
ε1,...,εn

(ξ1, . . . , ξn) ≡ i〈0|σ +
0 (0)|ξ1, . . . , ξn〉ε1,...,εn;i . (2.10)

In relation (2.9), i + m is to be read modulo 2. Note that each Sn satisfies the symmetry
relations (2.6).

An exact expression for the form factor Xi is known [19, 6]. To arrive at the result, one has
to exploit extensively the infinite-dimensional representation of Uq(ŝl2) and bosonize the
relevant vertex operators in order to be able to manipulate in a systematic way traces of
these operators which ultimately yield the correlation functions. Using this form factor, it is
possible to give an exact expression for the n-spinon DSF in the anisotropic case [14] and
determine its isotropic limit [15], obtained via the replacement [6, 14]

ξ = i e−2iερ q = −e−ε ε → 0+ (2.11)

where ρ becomes the spectral parameter suited for this limit. The expressions of the energy e
and momentum p in terms of ρ then read

e(ρ) = π

cosh(2πρ)
= −π sin p cot p = sinh(2πρ) −π � p � 0. (2.12)

It turns out that the transverse two-spinon DSF S2 does not involve a contour integration,
see (2.9). Its exact expression has been derived in [11]. It reads

S+−
2 (ω, k − π) = 1

4

e−I (ρ)√
ω2

2u − ω2
�(ω − ω2l )�(ω2u − ω) (2.13)

where � is the Heaviside step function and the function I (ρ) is given by

I (ρ) =
∫ +∞

0

dt

t

cosh(2t) cos(4ρt) − 1

sinh(2t) cosh(t)
et . (2.14)

ω2u(l) is the upper (lower) bound of the two-spinon excitation energies called the des Cloizeaux
and Pearson (dCP) [10, 11] upper (lower) bound or limit. They read

ω2u = 2π sin(k/2) ω2l = π | sin k|. (2.15)
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The quantity ρ is related to ω and k by the relation

cosh πρ =
√

ω2
2u − ω2

2l

ω2 − ω2
2l

(2.16)

which is obtained using equation (2.12) and the energy–momentum conservation laws. The
properties of S2 have been discussed in [12, 13] where a comparison with the Müller ansatz
[10] is carried out.

The four-spinon DSF S4 involves only one contour integration and its expression is given
in [14]. For 0 � k � π it reads

S+−
4 (ω, k − π) = C4

∫ 0

−π

dp3

∫ 0

−π

dp4F(ρ1, . . . , ρ4). (2.17)

For other values of k, it extends by symmetry using (2.6). C4 is a numerical constant irrelevant
for the present work since we will scale S4 to unity, and the integrand F is given by

F(ρ1, . . . , ρ4) =
∑

(p1,p2)

exp[−h(ρ1, . . . , ρ4)]
∑4

�=1 |g�(ρ1, . . . , ρ4)|2√
W 2

u − W 2
. (2.18)

The different quantities involved in this expression are as follows:

W = ω + π(sin p3 + sin p4)

Wu = 2π | sin(K/2)| K = k + p3 + p4 (2.19)

cot pj = sinh(2πρj ) −π � pj � 0.

The function h is given by

h(ρ1, . . . , ρ4) =
∑

1�j<j
′ �4

I (ρjj ′) (2.20)

where ρjj ′ = ρj − ρj ′ and the function g� reads

g� = (−1)�+1(2π)4
4∑

j=1

cosh(2πρj )

×
∞∑

m=�(j−�)

∏
i� =�

(
m − 1

2�(� − i) + iρji

)∏
i� =j π−1 sinh(πρji)

4∏
i=1


(
m − 1

2 + iρji

)
(m + 1 + iρji)

(2.21)

where � is the Heaviside step function. In (2.18), the sum
∑

(p1,p2)
is over the two pairs

(p1, p2) and (p2, p1) solutions of the energy–momentum conservation laws:

W = −π(sin p1 + sin p2) K = −p1 − p2. (2.22)

They read

(p1, p2) = (−K/2 + arccos(W/[2π sin(K/2)]),−K/2 − arccos(W/[2π sin(K/2)])).

(2.23)

Note that the solution in (2.23) is allowed as long as Wl � W � Wu where Wu is given in
(2.19) and

Wl = π | sin K|. (2.24)

The (analytic) behaviour of the function F in (2.18) is discussed in [14]. It is shown that
the series g� is convergent. It is also shown that g� stays finite when two ρi or more are equal.
Since the function exp(−h) goes to zero in these regions [12], the integrand F of S4 is regular
there. Furthermore, it is shown that F is exponentially convergent when one of the ρi goes to
infinity, which means the two integrals over p3 and p4 in (2.17) do not yield infinities. All
these analytic results help secure safe numerical manipulations.
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Figure 1. Four-spinon (full) and two-spinon (dashed) continua.

3. Behaviour of exact four-spinon DSF

From now on, we restrict ourselves to the interval 0 � k � π . All forthcoming results can be
carried to the other intervals of k using the symmetry relations (2.6). Also, we scale both S4

and S2 to appropriate units in order to display conveniently their respective behaviour.

3.1. Four-spinon continuum

The first feature we discuss is the ‘four-spinon continuum’, by analogy with the two-spinon (or
the spin-wave) continuum. It is the extent of the region in the (k, ω) plane outside which S4 is
identically zero. Remember that from (2.13), S2 is confined to the region ω2l (k) � ω � ω2u(k),
where ω2l,u(k) are the dCP boundaries given in (2.15). From the condition Wl � W � Wu

mentioned after (2.23), we deduce that in order for S4 to be nonzero identically, we must have
ω4l (k) � ω � ω4u(k), where

ω4l (k) = 3π sin(k/3) for 0 � k � π/2

ω4l (k) = 3π sin(k/3 + 2π/3) for π/2 � k � π

ω4u(k) = 4π cos(k/4) for 0 � k � π.

(3.1)

We see that ω4l (k) and ω4u(k) are sorts of four-spinon dCP boundaries for S4. The two-
and four-spinon continua are drawn in figure 1. We immediately note that the four-spinon
continuum is not restricted to the region between the two-spinon dCP branches, which means,
a fortiori, that the full S is also not confined to the spin-wave continuum. This is a direct and
explicit theoretical confirmation of the ‘tail’ of the dynamic structure function observed outside
the spin-wave continuum in finite-chain numerical calculations [10] and the phenomenology
[2]. Due to the six and higher spinon contributions, it is actually legitimate to expect the
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Figure 2. (Scaled) S4 as a function of ω for fixed k.

full DSF to tail even further outside the four-spinon continuum, with arguably much smaller
values. For example, in the interval 0 � k/π < 0.517 41, there is a narrow region between
ω2u and ω4l inside which both S2 and S4 are identically zero whereas the total S may have (very
small) nonzero values, something that could eventually be checked in finite-chain calculations.
However, it is not possible to estimate exactly the continua corresponding to the Sn>4 without
manageable explicit formulae for these. But what is already clear from our study is the
fact that indeed, the spin-wave continuum is not restrictive to the total dynamic structure
function.

There are further general features we can also read from figure 1 without having recourse
to detailed calculations. For example, we see that inside the interval 0 � k/π < 0.517 41,
the four-spinon continuum lies entirely above the two-spinon continuum. Given the presumed
smallness of the S2p>4 contributions to the total S, this means that for this interval, S2 may
be accepted as a good approximation for the total S between the spin-wave boundaries and S4

between ω4l and ω4u. For 0.517 41 � k/π � 1 however and as k increases, there is increasing
overlap between the two continua so that inside the spin-wave continuum, we may expect S
to divert in perhaps a non-negligible way from S2. These statements can possibly be checked
in finite-chain calculations but such a treatment is not the purpose of the present work.
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Figure 3. (Scaled) S2 as a function of ω for fixed k.

3.2. Behaviour as a function of the energy transfer

Next we describe the behaviour of S4 as a function of ω for fixed values of k. Figure 2 displays
the shapes of S4 for k/π = 1/4, 1/2, 3/4 and 1, respectively. As an illustration, take for
example the case k/π = 1/4. We see in figure 2 that S4 is zero until ω/π 	 0.68, which
corresponds to the beginning of the four-spinon continuum ω4l (π/4)/π = 3 sin(π/12) =
0.776 46. We obtain a slightly smaller value when reading directly from figure 2 because
of fitting. Note that it is important to check each time consistency with the four-spinon
continuum. This is because the lower and upper branches ω4l,u(k) are not imposed explicitly
in the integration algorithm of S4 unlike the case of S2 where the corresponding expression
(2.13) incorporates explicitly the two-spinon dCP boundaries ω2l,u(k). For S4, only the
conditions Wl � W � Wu noted just before (2.24) are imposed.

Starting from ω/4π 	 0.17, S4 jumps sharply from zero to a maximum at ω/4π 	 0.21
(read from figure 2). Then it decreases with two apparent local minima until it becomes
negligible at roughly ω/4π 	 0.6. The upper branch of the four-spinon continuum at
k = π/4 is ω4u(π/4)/4π = cos(π/16) = 0.9808. Hence, S4 is practically negligible (but
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Figure 4. (Scaled) S4 as a function of k for fixed ω.

not identically zero) for values of ω/4π between about 0.6 and 0.9808. The description of
S4 as a function of ω for the other values of k can be carried along the same lines and each
time, consistency with the four-spinon continuum is checked. The shapes are all similar to
one another: a steep increase from zero to a maximum value, followed by a ‘wiggled’ slower
decrease to zero.

Furthermore, it is interesting to note that for all values of k, the overall shape of S4, not
the detail, is roughly similar to that of S2, represented as a function of ω for the same values
of k in figure 3. For instance, for k/π = 1/4, S2 starts very sharply at about ω/2π 	 0.35,
which corresponds to the start of the two-spinon continuum at ω2l (π/4)/2π = 0.353 55. It
reaches a maximum before decreasing more slowly towards zero. The only difference worth
mentioning is the decrease of S4 after its absolute maximum which presents local minima and
maxima whereas the decrease of S2 is always ‘smooth’. This may originate from the ‘richer’
structure of the expression of S4 with respect to that of S2. It may also be of some physical
significance, but such an understanding is lacking at present.

3.3. Behaviour as a function of the momentum transfer

Last we describe the behaviour of S4 as a function of k for fixed values of ω. In figure 4
are plotted the graphs of S4 in terms of k for ω/π = 1/4, 1/2, 3/4, 1 respectively. Let us
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Figure 5. (Scaled) S2 as a function of k for fixed ω.

describe for example the case ω/π = 1/4. We see in figure 4 that S4 is zero until we reach
the value k/π 	 0.88. On the other hand, the four-spinon continuum lies outside the interval
0.079 67 � k/π � 0.920 33. In the region 0 � k/π � 0.079 67, figure 4 shows no discernible
finite values for S4, only a very thin ‘trace’ that would be more visible with a better resolution.
This means that S4 is negligible for those small values of k. For larger values of ω though, S4

picks up clear finite values in the interval 0 � k � 3 arcsin(ω/3π); see the other graphs in
figure 4. Those values get larger as ω increases.

Returning to the case ω/π = 1/4, we see that S4 starts from zero at k/π 	 0.88 (slightly
smaller than the exact value 0.920 33 because of fitting), rises sharply to a maximum and then
decreases. The behaviour of S4 for the other values of ω is also consistent with the four-spinon
continuum. Take for example the case ω/π = 1/2. The four-spinon continuum indicates that
S4 is identically zero for 0.1599 � k/π � 0.840 08. We see indeed small values for S4 from
k/π = 0 up to a little before 0.2, and S4 rising again from zero a little after k/π = 0.8 to a
local maximum, then to an absolute maximum before decreasing.

Here too S2 has a similar overall behaviour within its own (two-spinon) continuum.
Figure 5 displays the behaviour of S2 with respect to k for the same fixed values of ω. But
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Figure 6. The integrand F in (2.17) as a function of (p3, p4) for (k, ω) = (0.52π, 2π).
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Figure 7. The integrand F in (2.17) as a function of (p3, p4) for (k, ω) = (0.5π, 3π).

as ω increases, we note the richer structure of S4 with respect to the corresponding one for
S2. This is likely due to the more involved expression of S4. In fact, for larger values of ω,
the integrand F in (2.17) is nonvanishing in larger and larger areas in the (p3, p4) plane. For
illustration, compare the behaviour of F shown in figure 6 for (k, ω) = (0.5π, 2π) with that
shown in figure 7 for (k, ω) = (0.5π, 3π). In this regard, we recall that the quadrature-based
algorithms written in [16] were based on this observation and took advantage of the fact that
for fairly small values of ω, the integrand F was negligible in large areas of the (p3, p4) plane.
This is the reason why those algorithms could not be carried to larger values of ω, or be able
to describe efficiently a behaviour as a function of the neutron energy ω itself. As already
mentioned, we have used here Monte Carlo techniques and we can do better, but consistency
with [16] is realized, i.e., we have the same behaviour of S4 as a function of k for the same
small values of ω.
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Figure 8. (Scaled) S4 as a function of k and ω.
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Figure 9. (Scaled) S2 as a function of k and ω.

4. Conclusion

In this work, we have described the behaviour of the exact four-spinon dynamic structure
function S4 in the antiferromagnetic isotropic Heisenberg quantum spin chain at zero
temperature as a function of the neutron energy ω and momentum transfer k. We have also
determined the four-spinon continuum, the region outside which S4 is identically zero. The
discussion was carried out in the form of a comparison with the corresponding behaviour of
the exact two-spinon dynamic structure function S2, already known in the literature. Figures 8
and 9 summarize these two types of behaviour where S4 and S2 are drawn in the (k, ω) plane,
respectively. Recall that we have scaled them down to 1.

Also, it is worth mentioning that the precision of our Monte Carlo runs is in general
satisfactory (a standard deviation less than 5% in most cases) except for a few difficult points.
We refrained from discussing thoroughly this technical part of the work here and plan to do
it in [17] where we calculate a number of sum rules for S4 and S2 the total dynamic structure
function is known to satisfy exactly.

There are four directions in which one may wish to carry this work forward. The first is
the anisotropic case. The model is exactly soluble and we do have generic expressions for Sn

in the form of contour integrals in the spectral parameters’ complex planes [15]. The difficulty
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here is that the integrands involve much more complicated functions which are already present
in S2, and one should expect intricate complexities in this more general case.

The second direction in which one may want to push forward is the situation where there
is an external magnetic field. There are finite-chain calculations in this regard, [10] and more
recently the works [20]. But one has to remember that the model is not exactly solvable in
this case. So one may want to try small perturbations around the zero-field limit solution. The
third direction is the finite-temperature case. Here too there are finite-chain results and it is
interesting to see those effects on S2 and S4. The fourth direction is to look into the situation of
a spin 1 chain. The model is still exactly solvable and exploiting the quantum group symmetry,
compact expressions for the form factors are available [21–23].
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